Nanoparticle superlattices shape-up under pressure
نویسندگان
چکیده
منابع مشابه
Metal nanoparticle catalysts beginning to shape-up.
The field of heterogeneous catalysis has received a remarkable amount of interest from scientific and industrial perspectives because of its enormous impact on the world's economy: more than 90% of chemical manufacturing processes use catalysts. Catalysts are also essential in converting hazardous waste into less harmful products (car exhaust) and in generating power (fuel cells). Yet in all ap...
متن کاملMacroscopic and tunable nanoparticle superlattices.
We describe a robust method to assemble nanoparticles into highly ordered superlattices by inducing aqueous phase separation of neutral capping polymers. Here we demonstrate the approach with thiolated polyethylene-glycol-functionalized gold nanoparticles (PEG-AuNPs) in the presence of salts (for example, K2CO3) in solutions that spontaneously migrate to the liquid-vapor interface to form a Gib...
متن کاملRoutes to Nanoparticle-Polymer Superlattices
Nanoparticles can self-assemble into highly ordered twoand three-dimensional superlattices. For many practical applications these assemblies need to be integrated into polymeric matrices to provide stability and function. By appropriate co-assembly of nanoparticles and polymers it has become possible to tailor the nanoparticle superlattice structure via the length and stiffness of the polymer c...
متن کاملDiamond family of nanoparticle superlattices.
Diamond lattices formed by atomic or colloidal elements exhibit remarkable functional properties. However, building such structures via self-assembly has proven to be challenging because of the low packing fraction, sensitivity to bond orientation, and local heterogeneity. We report a strategy for creating a diamond superlattice of nano-objects via self-assembly and demonstrate its experimental...
متن کاملDipole-dipole interactions in nanoparticle superlattices.
Nanoparticles often self-assemble into hexagonal-close-packed (hcp) structures although it is predicted to be less stable than face-centered-cubic (fcc) packing in hard-sphere models. In addition to close-packed fcc and hcp superlattices, we observe formation of nonclose-packed simple-hexagonal (sh) superlattices of nearly spherical PbS, PbSe, and gamma-Fe2O3 nanocrystals. This surprisingly ric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Today
سال: 2008
ISSN: 1369-7021
DOI: 10.1016/s1369-7021(08)70233-5